## MATH 306 Workshop

| Important Theorems: (you should also review all the definitions) | Important Theorems: | (you should a | ılso review all | I the definitions) |
|------------------------------------------------------------------|---------------------|---------------|-----------------|--------------------|
|------------------------------------------------------------------|---------------------|---------------|-----------------|--------------------|

Subspace: 1.34

Direct sum: 1.44, 1.45

Span: 2.21

- 1. What is the definition of a **subspace**?
- 2. How do we prove a subset of a vector space is a subspace?
- 3. Prove or disprove: if A and B are two subspaces of V, then the union of A and B is also a subspace of V.

4. Suppose  $U = \{(x, x, y, y) \in \mathbb{F}^4 : x, y \in \mathbb{F}\}$ 

Find a subspace W of  $\mathbb{F}^4$  such that  $\mathbb{F}^4 = U \oplus W$ 

- 5. Review the definitions from 2A
  - a. Linear combination
  - b. Span
  - c. Finite-dimensional vector space

- d. Polynomial,  $\mathcal{P}(\mathbb{F})$
- e.  $\mathcal{P}_m(\mathbb{F})$
- f. Linearly independent
- 6. Suppose  $v_1, v_2, v_3, v_4$  spans V. Prove that the list

$$v_1-v_2$$
 ,  $v_2-v_3$  ,  $v_3-v_4$  ,  $v_4$ 

also spans V.

7. Explain why no list of 4 polynomials spans  $\mathcal{P}_4(\mathbb{F})$